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Abstract Polymorphisms between the coding sequences
of high-molecular-weight (HMW) glutenin x-type genes at
the Glu-1 locus were used to amplify Glu-1B x-type-
specific PCR fragments. PCR analysis in a wheat cultivar
subset carrying different Glu-1B x-type alleles resulted in
PCR fragments that differed in size for Glu-B1-1d (B-x6)
and non-Glu-B1-1d (B-x6) genotypes. Subsequent sequen-
cing analysis revealed a 15-bp in-frame insertion in the
coding regions of all Glu-B1-1d (B-x6) genotypes which
allowed the development of a B-x6-specific PCR assay for
high-throughput allele sizing by ion-pair reversed-phase
high-performance liquid chromatography. The assay was
validated in a set of 86 German wheat cultivars, and
genotyping data unequivocally verified the presence of
HMW glutenin subunits GLU-B1-1D (Bx-6) + GLU-B1-
2A (By-8) by means of sodium dodecyl sulphate-poly-
acrylamide gel electrophoresis. These results demonstrate
that the PCR assay can be applied for the detection and
negative selection of the ‘poor breadmaking quality’ Glu-
B1-1d (B-x6) alleles in wheat breeding programs.

Introduction

The flour quality in common wheat depends on the
composition of two major seed storage protein fractions,

the glutenins and the gliadins. Of these, the high-
molecular-weight (HMW) glutenins significantly influ-
ence dough strength and elasticity (Payne et al. 1981). The
HMW glutenin subunits (GS) are encoded by six genes
located at complex Glu-1 loci on the long arms of
homologous chromosomes 1A, 1B and 1D. Two tightly
linked genes are present at each Glu-1 locus, each of
which encodes two types of HMW subunits: one of a
higher molecular weight, designated as the x-type subunit,
and the other of a lower molecular weight, designated as
the y-type subunit (Harberd et al. 1986). These subunits
display extensive variation, and their allelic composition is
firmly associated with breadmaking quality. In particular,
the GLU-D1-1D (Dx-5) + GLU-D1-2B (Dy-10) subunit
pair at the Glu-D1 locus contributes to good breadmaking
quality, while the GLU-A1-1B (Ax-1) and GLU-B1-1A
(Bx-7) subunits at the Glu-A1 and Glu-B1 loci, respec-
tively, have been found to influence the breadmaking
properties of wheat (Payne et al. 1987; Weegels et al.
1996).

Sodium dodecyl sulphate-polyacrylamide gel electro-
phoresis (SDS-PAGE) of seed protein is routinely used to
analyse the composition of HMW glutenin subunits at the
protein level (Bietz et al. 1975). This method is based on
differences in molecular mass of the single protein
subunits and allows the simultaneous assessment of
complete HMW glutenin profiles. However, SDS-PAGE
can only be carried out with extracted protein fractions
from seeds. Furthermore, SDS gels are not well suited for
automated high-throughput allele genotyping due to the
need of manual interventions. The application of DNA
markers for discriminating HMW glutenin subunits offers
several advantages over the traditional testing method. The
latter are detectable at all stages of plant growth and are
not affected by the environment. PCR-based molecular
markers in particular provide a powerful tool for high-
throughput and cost-efficient genotyping due to their high
potential for automation.

The availability of nucleotide sequences of different
HMW glutenin alleles has enabled PCR-based methods to
be used for assessing allelic variation at the Glu-1 loci.
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With respect to Glu-D1 and Glu-A1, several PCR assays
have already been developed to detect the ‘good-quality’
HMW glutenin subunit alleles Glu-D1-1d (Dx-5; D’Ovi-
dio and Anderson 1994; Smith et al. 1994; Ahmad 2000;
De Bustos et al. 2000, 2001; Radovanovic and Cloutier
2003; Schwarz et al. 2003), Glu-A1-1b and Glu-A1-1c
(Ax-1 andAx-2*; Lafiandra et al. 1997; De Bustos et al.
2000, 2001; Radovanovic and Cloutier 2003), respec-
tively. In the case of the Glu-B1 locus, the HMW subunit
pairs GLU-B1-1A (Bx-7) + GLU-B1-2A (By-8), GLU-B1-
1A (Bx-7) + GLU-B1-2B (By-9) and GLU-B1-1H (Bx-
17) + GLU-B1-2F (By-18) were found to be correlated
with good breadmaking quality, whereas the combination
GLU-B1-1D (Bx-6) + GLU-B1-2A (By-8) is associated
with poor breadmaking properties (Branlard and Dardevet
1985; Payne et al. 1987; Lawrence et al. 1988). PCR-
based assays have recently been developed to discriminate
between chromosome 1B-encoded subunits (Ahmad 2000;
Ma et al. 2003; Butow et al. 2003), but these are not aimed
at identifying ‘poor quality’ GLU-B1-1D (Bx-6) subunits.

In the investigation reported here, we looked for DNA
polymorphisms between the HMW glutenin alleles Glu-
B1-1d (Bx-6), Glu-B1-1a (Bx-7) and Glu-B1-1 h (Bx-17).
We found an in-frame insertion in the coding regions of
Glu-B1-1d (Bx-6) alleles that enabled us to develop a Bx-
6-specific PCR assay for high-throughput allele sizing by

ion-pair reversed-phase high-performance liquid chroma-
tography (IP-RP-HPLC). The assay was validated in a set
of 86 German wheat cultivars.

Materials and methods

Plant material

The nullitetrasomics N1AT1B, N1BT1A and N1DT1A of
Triticum aestivum cv. Chinese Spring were used for
chromosome assignment of the PCR products. Absence of
a band in a particular nullitetrasomic line indicates the
chromosome harbouring the corresponding sequence. IP-
RP-HPLC allele sizing was carried out in a set of 86 T.
aestivum common wheat and three T. turgidum durum
wheat cultivars (Table 1). Data for HMW glutenin subunit
constitutions were obtained from the Section for Seed
Certification of the Bavarian State Research Center for
Agronomy and the GrainGenes database (http://wheat.pw.
usda.gov).

Table 1 HMW glutenin sub-
units at the Glu-B1 locus of
selected German wheat cultivars

Cultivar Glu-B1 subunits Cutivar Glu-B1 subunits Cultivar Glu-B1 subunits

1 Agent 6+8 30 Corvus 6+8 59 Naxos 7+9
2 Alidos 17+18 31 Darwin 6+8 60 Olivin 7+9
3 Altos 17+18 32 Dekan 6+8 61 Ortler 7+9
4 Andros 6+8 33 Devon 7+9 62 Pagode 7+9
5 Anemos 7+9 34 Dream 7+9 63 Pegassos 7+9
6 Apollo 6+8 35 Drifter 7+8 64 Petrus 7+9
7 Applaus 7+9 36 Ebi 7+8 65 Piko 6+8
8 Ares 6+8 37 Estica 6+8 66 Previa 6+8
9 Aristos 7+9 38 Eta 7+9 67 Quattro 7+9
10 Armada 6+8 39 Flair 6+8 68 Ramiro 7+9
11 Aron 7+9 40 Florida 6+8 69 Rektor 7+9
12 Astron 7+9 41 Futur 7+8 70 Ritmo 6+8
13 Atlantis 6+8 42 Glockner 7+9 71 Romanus 6+8
14 Batis 7+9 43 Gorbi 6+8 72 Semper 7+9
15 Benno 6+8 44 Granada 6+8 73 Skater 6+8
16 Biscay 6+8 45 Habicht 6+8 74 Sperber 7+9
17 Bold 6+8 46 Herzog 7+9 75 Tambor 7+9
18 Borenos 7+9 47 Ibis 7+9 76 Tarso 7+9
19 Borneo 7+9 48 Jubilar 6+8 77 Terrier 6+8
20 Bovictus 7+9 49 Kanzler 7+8 78 Thasos 7+9
21 Bussard 7+9 50 Kontrast 17+18 79 Toni 6+8
22 Caesar 7+9 51 Kornett 7+9 80 Toronto 7+9
23 Cardos 7+9 52 Kris 7+9 81 Tower 6+8
24 Certo 6+8 53 Kronjuwel 6+8 82 Trakos 7+9
25 Clan 6+8 54 Maverick 17+18 83 Vergas 6+8
26 Combi 7+9 55 Melon 7+8 84 Winni 7+9
27 Contra 6+8 56 Mikon 7+9 85 Xanthos 6+8
28 Convent 6+8 57 Monopol 7+9 86 Zentos 7+9
29 Cortez 7+8 58 Munk 7+9
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DNA isolation and PCR amplification

Genomic DNA from kernels was extracted and purified as
described by Schwarz et al. (2003). PCR was carried out
on a PRIMUS 96 advanced thermocycler (Peqlab) in 20-μl
reaction volumes containing 50 ng genomic DNA, 1.5 mM
MgCl2, 0.2 μM of each of primer bx7-f (5′-cactgagatggc-
taagcgcc-3′) and bx7-r (5′-gccttggacggcaccacagg-3′),
0.2 mM dNTP and 0.5 U thermostable proofreading
polymerase Optimase (Transgenomic) in 1× PCR reaction
buffer supplied by the manufacturer. PCR products were
amplified using following conditions: an initial denatur-
ation for 2 min at 95°C; 35 cycles of 30 s at 95°C, 30 s at
50°C and 1 min at 72°C; a final extension for 5 min at
72°C.

Sequence analysis

PCR products were sequenced in both directions with the
bx7-f and bx7-r primers on an ABI377 platform (Applied
Biosystems, Foster City, Calif.) using standard dye
terminator chemistry (Amersham-Pharmacia Biotech,
Piscataway, N.J.). Editing of DNA sequences was
performed with SEQUENCE NAVIGATOR software (Applied
Biosystems), and the multiple sequence alignment tool
CLUSTALW (Thompson et al. 1994; http://www.ebi.ac.uk/
clustalw) was used for evaluating polymorphisms. Simi-
larity searches were carried out using BLAST algorithms
(Gish and States 1993).

Agarose gel analysis

PCR products were separated by electrophoresis on 3.0%
Metaphor agarose gels (FMC BioProducts) in TAE buffer
containing ethidium bromide.

IP-RP-HPLC analysis

IP-RP-HPLC analysis was performed on a fully automated
WAVE Nucleic Acid Fragment Analysis System (Trans-

genomic). Unpurified PCR reactions were automatically
loaded on the column with an autosampler. The stationary
phase consisted of a DNA SEP Column System
(Transgenomic) filled with alkylated nonporous poly
(styrene divinylbenzene) particles. The column’s mobile
phase consisted of a mixture of 0.1M triethylamine acetate
(pH 7.0) with (buffer A) or without 25% acetonitrile
(buffer B). DNA fragments were eluted with a linear
acetonitrile gradient of 0.5% per minute at a flow rate of
0.75 ml/min and detected by 260 nm absorbance. A
column temperature of 50°C was used for sizing the PCR
fragments. At non-denaturing conditions the DNA sepa-
ration is based solely on fragment size and is independent
of sequence. The application of an increasing acetonitrile
gradient releases the sample in order of increasing length.
The analysis took 8 min, including column regeneration
and re-equilibration to the starting conditions. IP-RP-
HPLC data were managed with NAVIGATOR

SOFTWARE ver. 1.5.2 (Transgenomic).

Results and discussion

Amplification and characterisation of Glu-1B x-type-
specific PCR fragments

The coding sequences of Glu-A1-1b (Ax-1; Halford et al.
1992; EMBL Accession No. X61009), Glu-A1-1c (Ax-2* ;
Anderson and Greene 1989; M22208), Glu-B1-1cs (Bx-1 ;
Schlumbaum et al. 1998; Y10954), Glu-B1-1a (Bx-7 ;
Anderson and Greene 1989; X13927), Glu-D1-1a (Dx-2 ;
Sugiyama et al. 1985; X03346) and Glu-D1-1d (Dx-5 ;
Anderson et al. 1989; X12928) were compared with each
other. The CLUSTALW alignment revealed polymorphisms
between the HMW glutenin x-type genes from the A, B
and D genomes, which allowed the selection of Glu-1B x-
type-specific PCR primers bx7-f and bx7-r exhibiting
allele-specific mismatch 3′-residues (Fig. 1). The ampli-
fication of HMW glutenin x-type gene sequences from the
A and D genomes was successfully suppressed, as
demonstrated by PCR analysis of nullitetrasomic lines
(Fig. 2). The lack of amplification of the expected 321-bp
PCR fragment in N1BT1A of T. aestivum cv. Chinese

Fig. 1 Comparative alignment
of the coding sequence of HMW
glutenin x-type alleles at the
Glu-1 locus from public data-
bases (DB). The primer binding
sites for Glu-B1 x-type-specific
amplification are indicated by
arrows. The start codon is
indicated in bold
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Spring proved its allocation to chromosome 1B. PCR
analysis in a wheat cultivar subset carrying Glu-B1-1d
(Bx-6), Glu-B1-1a (Bx-7) and Glu-B1-1 h (Bx-17) alleles,
respectively, resulted in different PCR fragment sizes for
the Glu-B1-1d (Bx-6) and non-Glu-B1-1d (Bx-6) geno-
types (Fig. 2). Subsequent sequencing and comparative
analysis of three Glu-B1-1a (Bx-7) PCR fragments
(amplified with DNA from wheat cvs. Monopol, Bussard
and Combi), one Glu-B1-1 h (Bx-17) PCR fragment
(wheat cv. Alidos) and four Glu-B1-1d (Bx-6) PCR
fragments (wheat cvs. Florida, Bold, Flair and Apollo)
confirmed a 15-bp insertion in the coding regions of all
Glu-B1-1d (Bx-6) genotypes (Fig. 3). The inserted nucle-
otide sequence is a duplication of the adjacent 5′ sequence
plus some additional bases to create a short palindrome at
the 5′ end of the insertion/duplication. The insertion was
in-frame and encodes for the deduced amino acid
sequence, RKREL. A basic sequence similarity search
(BLASTP) was conducted with the full length of the Glu-B1-
1d (Bx-6) PCR fragment. The deduced amino acid
sequence exhibited highest identities with several partial
HMW glutenin subunit protein sequences of two wheat
subspecies: two GLU-BX subunits of T. turgidum
(SWALL Accession No. AAQ93629, Q8RVX0) and
several GLU-B1-1 subunits of T. spelta genotypes
(Q7XAI0–Q7XAI910, Q7XAJ0–Q7XAJ5, Q7X8G5,
Q7X8G6, Q7XZH9), all of them featuring the RKREL
insertion. Therefore, PCR analysis was carried out with
DNA from T. turgidum cvs. Creso, Mondur and Combo.
All three cultivars showed the RKREL insertion of the in
durum wheat quite common Glu-B1-1d (Bx-6) allele.
Since the in-frame insertion might change the three-
dimensional structure of the glutenin subunit proteins, a

functional association with baking quality properties can
be assumed. In addition to the insertion, two single
nucleotide polymorphisms (SNP) were found in the Glu-
B1-1d (Bx-6) fragment sequence (Fig. 2). The polymor-
phism at nucleotide position 105 leads to an amino acid
exchange from Arg to His, whereas a SNP at nucleotide
position 211 is a silent third base substitution. No
sequence variations were found between genotypes
carrying the Glu-B1-1a (Bx-7) and Glu-B1-1 h (Bx-17)
alleles, respectively, and the corresponding Glu-B1-1a
(Bx-7) sequence from the public database.

IP-RP-HPLC genotyping

For automated fragment sizing of Glu-1B x-type-specific
PCR fragments we used IP-RP-HPLC. In order to test the
reproducibility of allele sizing, we calculated the average
retention times and standard deviations of 20 repeated runs
with Glu-B1-1d (Bx-6) and Glu-B1-1a (Bx-7) fragments.
Highly reproducible averaged retention times of 4.000 min
(σ = 0.018) and 4.157 min (σ = 0.035) were found for the
larger Glu-B1-1d (Bx-6) and smaller Glu-B1-1a (Bx-7)
fragments. Thus, a difference in length of only 15 bp (6%)
resulted in an average difference in retention time of
0.157 min (Fig. 4), which allowed the unambiguous and
automated discrimination of Glu-B1-1d (Bx-6) and Glu-
B1-1a (Bx-7) alleles with the NAVIGATOR

SOFTWARE ver. 1.5.2 (Transgenomic). Our observations
were in agreement those of Huber et al. (1995) who
thoroughly studied the precision and reproducibility of IP-
RP-HPLC with respect to fragment sizing and were able to
resolve DNA fragments differing only 2–3% in length.

Fig. 2 Chromosomal assignment and allele-specific analysis of the
Glu-B1 x-type amplicons. Lanes: 1 Nullitetrasomic line N1AT1B, 2
nullitetrasomic line N1BT1D, 3 nullitetrasomic line N1DT1B, 4

Chinese Spring, 5–7 Glu-B1-1a (Bx-7) wheat varieties, 8 Glu-B1-1 h
(Bx-17) wheat variety, 9–12 Glu-B1-1d (Bx-6) wheat varieties, 13
control (H2O), M 100-bp ladder

Fig. 3 Comparative alignment
of the Glu-1B x-type PCR frag-
ment nucleotide sequences (SQ)
and Glu-B1-1a (Bx-7) sequence
from public databases (DB)
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This excellent size-dependent separation efficiency makes
IP-RP-HPLC also applicable for sizing DNA microsatel-
lites. Devaney et al. (2000) optimised IP-RP-HPLC
conditions (column temperature, flow rate, percentage
organic modifier per minute) for genotyping short tandem
repeats and achieved a resolution of fragments that
differed as little as 1% in chain length. Alternative and
frequently used methods for high-throughput allele sizing
are multi-color fluorescence-based DNA analysis systems
for example, the GeneScan/Genotyper platform of Applied
Biosystems (Schwarz et al. 2000; Rampling et al. 2001).
The use of fluorescently labelled primers or nucleotides
with distinguishable wavelength emissions different PCR
fragments to be amplified in one reaction (multiplexing)
and different samples to be electrophoresed simultaneous-
ly (multimixing). Although multifluorophore genotyping
systems provide the capability to analyse hundreds of
samples per day, the costs per sample of this type of
analysis are high compared to IP-RP-HPLC genotyping
due to the requirements of PCR chemicals and instrumen-
tation for the former. In our investigation we carried out
IP-RP-HPLC genotyping on a set of 86 German bread
wheat cultivars (Table 1). All of the Glu-B1-1d (Bx-6)
genotypes exhibited the larger fragment size compared to
the Glu-B1-1a (Bx-7) andGlu-B1-1 h (Bx-17) genotypes.
Consequently, we concluded that the 15-bp in-frame
insertion is diagnostic for the Glu-B1-1d (Bx-6) allele.

Marker-assisted negative selection of Glu-B1-1d (Bx-
6) alleles

Based on quality evaluations of a large numbers of
cultivars, Payne et al. (1987) developed a scoring system
for HMW-GS in which individual subunits are graded

using numbers (1–4) according to their contribution to
breadmaking quality. In the case of the Glu-1B locus, the
subunit combinations of GLU-B1-1A (Bx-7) + GLU-B1-
2A (By-8), GLU-B1-1A (Bx-7) + GLU-B1-2B (By-9) and
GLU-B1-1H (Bx-17) + GLU-B1-2F (By-18), which are
positively correlated with dough strength and breadmak-
ing potential of flours, were assigned quality scores of 2 or
3, whereas GLU-B1-1D (Bx-6) + GLU-B1-2A (By-8) was
assigned to the worst quality score 1. Several investigators
have subsequently verified the validity of these quality
scores for the chromosome 1B-encoded subunits (Preston
et al. 1992; Dong et al. 1992; Khatkar et al. 1996).
Moreover, it has also been observed that subunit GLU-B1-
1E (Bx-20) has a detrimental effect on dough strength
(Shewry et al. 2003), whereas the over-expression of
GLU-B1-1A (Bx-7) was found to be associated with
improved dough strength (Lukow et al. 1992). For the
discrimination of Glu-B1-1a (Bx-7) alleles, which differ
with respect to expression level, a marker has been
developed based on an 18-bp insertion/deletion at the C-
terminal end of the central repetitive domain of the Glu-
B1-1a (Bx-7) coding sequence (Butow et al. 2003). To
date, however, negative selection of Glu-B1-1d (Bx-6)
alleles at the DNA level was not feasible, since the already
developed PCR-based assays for Glu-B1 subunits only
allowed discrimination between the ‘good quality’ sub-
units GLU-B1-1A (Bx-7) and GLU-B1-1H (Bx-17)
(Ahmad 2000; Ma et al. 2003). We describe here for the
first time a highly reproducible and rapid PCR-based
method for the automated genotyping of Glu-B1-1d (Bx-
6)-specific fragments. The genotyping data we obtained
enabled marker-assisted negative selection of ‘poor qual-
ity’ Glu-B1-1d (Bx-6) alleles. This is a major step forward
in compiling PCR assays which allow comprehensive

Fig. 4 IP-RC-HPLC elution
profiles of PCR fragments gen-
erated with template DNA of
wheat varieties containing the-
Glu-B1-1a (Bx-7) (A) and Glu-
B1-1d (Bx-6) (B) alleles, re-
spectively
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scoring of Glu-1 alleles, and our assay can be integrated in
future baking quality breeding programmes.
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